American University of Beirut

Statistics 230 Sections 3 and 4
Final Exam, January 30 ${ }^{\text {th }}, 2010$
NAME:

SECTION:

PART I. Answer Questions 1 to 8 by circling T for TRUE or F for FALSE. (1 point each)

1. $\mathbf{T} \mathbf{F}$ There exists a pair of random variables X and Y such that $E[X]=E[Y]=0$, $E[X Y]=3, \operatorname{var}(X)=1$ and $\operatorname{var}(Y)=3$.
2. $\mathbf{T} \quad \mathbf{F} \quad$ The equation $\operatorname{std} \cdot \operatorname{dev}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{std} \cdot \operatorname{dev}\left(X_{1}\right)+\cdots+\operatorname{std} \cdot \operatorname{dev}\left(X_{n}\right)$ is true if and only if X_{1}, \cdots, X_{n} are independent.
3. T \mathbf{F} We can reconstruct the joint p.d.f of two random variables X and Y by knowing the two marginal densities of X and Y.
4. T $\quad \mathbf{F}$ Let X and Y be independent Poisson variables with distinct parameters λ_{1} and λ_{2}. Then the sum $X+Y$ also has a Poisson distribution.
5. T \mathbf{F} Let X and Y be independent exponential random variables with the same parameter λ. Then the variable $Z=\max (X, Y)$ is also exponentially distributed.
6. T $\quad \mathbf{F}$ Let X and Y be two independent random variables uniformly distributed in $[0,1]$. Let $M_{1}=\min (X, Y)$ and $M_{2}=\max (X, Y)$. Then M_{1} and M_{2} are independent.
7. $\mathbf{T} \mathbf{F}$ Given that the moment generating function of random variable X is $M(t)=$ $\frac{1}{9}(1+2 t)^{2}$, then $E[X]$ is less than 1.
8. $\mathbf{T} \mathbf{F}$ Consider strings that only contain H (for heads) or T (for tails) resulting from tossing a coin repeatedly. The number s_{n} of strings of size $n>2$ that contain the substring $H H T$ exactly once at the very end is governed by the recurrence relation $s_{n}=s_{n-1}+s_{n-2}+1$.

PART II. SHORT ANSWER QUESTIONS: Answer the following question by giving a brief justification. You can use the other blank side of the page to finish your work if needed. (2points each)
9. Let X be the number of days that a patient needs to stay in a certain hospital. Suppose X has the p.m.f. $f(x)=\frac{6-x}{15}, x=1, \cdots, 5$. The patient receives $\$ 100$ from his insurance company for each of the first three days in the hospital and $\$ 50$ for any other day, if needed. Find the expected payment by the insurance company.

\$ 220

10. Find $P[X>Y]$ where X and Y are two random variables with the joint p.d.f.

$$
f(x)= \begin{cases}12 x y & \text { for } 0 \leq x \leq 1, x^{2} \leq y \leq \sqrt{x} \\ 0 & \text { otherwise }\end{cases}
$$

1/2

11. Given $E[X+3]=9$ and $E\left[(X+3)^{2}\right]=100$. Find the standard deviation of X

$$
\begin{aligned}
& \text { sqrt } \\
& \text { (19) }
\end{aligned}
$$

12. An urn contains 3 white chips and 7 black chips. 8 chips are selected with replacement from the urn. Let X be the number of white chips observed among the selected chips. The variance of X is

$$
\begin{gathered}
1.68, \\
x \sim b(8,0.3)
\end{gathered}
$$

13. The probability of suffering a side effect from a certain medication is 0.002 . If 500 persons are given this medication, the approximate probability that more than one person suffers a side effect is

0.26 poisson approx.

14. Let X be a random variable that is normally distributed with $\mu=0$ and $\sigma=5$. Find a point a so that $P[-a<X<a]=0.8$.

$$
\begin{gathered}
? ? ? ? ? ? ? \\
->\text { normal, } \mathrm{mu}=0==>\text { centered } \\
\text { at } 0: \mathrm{p}=2^{*} \mathrm{p}(\mathrm{x}<\mathrm{a}) \\
==>\mathrm{p}(0<\mathrm{x}<\mathrm{a})=0.4
\end{gathered}
$$

15. The cumulative distribution function of a random variable X is given by $F(x)=1-e^{-2 x}$. Find the median of X.

0.346574

16. X is a random variable with p.d.f. $f(x)=3 x^{2}, 0<x<1$. The distribution of $Y=\sqrt{X}$ is

$$
\begin{gathered}
6^{\star} y^{\wedge} 5 \\
\text { DOMAINE : } 0<y<1
\end{gathered}
$$

17. Let X and Y have the joint density $f(x, y)=2$, for $0<y \leq x<1$. Find the conditional density of Y given $X=1 / 2$.

$$
2
$$

PART III. PUT the detailed solutions to TWO of the following problems. Indicate clearly the problem that you omit. (3 points each)
18. Let X and Y be two random variables with the joint p.d.f.

$$
f(x)= \begin{cases}2 x & \text { for } 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { else }\end{cases}
$$

(a) Find $\rho(X, Y)$, the correlation coefficient of X and Y.
(b) Find the regression line that approximates linearly the relationship between X and Y.

$$
\begin{gathered}
\text { (a):0 } \\
\text { (b): } \mathrm{Y}=\mathrm{mu} _\mathrm{y}=0.5
\end{gathered}
$$

19. Let X_{1} and X_{2} be two independent and exponentially distributed random variables with common parameter $\theta=1$. Consider the transformation $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=X_{1}$.
(a) Find the joint density of Y_{1} and Y_{2}.
(b) Deduce the probability density function of the ratio X_{1} / X_{2}

$$
(y(2)) /\left(y(1)^{\wedge 1}\right) \quad * e^{\wedge}(-y 2(1+1 / y 1))
$$

1/(y1^2+1+2y1)
20. Let X_{1}, \cdots, X_{36} be independent and exponentially distributed random variables with parameter $\theta=5$.
(a) Approximate the probability that the average \bar{X} exceeds 6 .
(b) Use the moment generating function technique to find the distribution of $\sum_{k=1}^{36} X_{k}$.

